A Micro-Machined Microphone Based on a Combination of Electret and Field-Effect Transistor

نویسندگان

  • Kumjae Shin
  • Junsik Jeon
  • James Edward West
  • Wonkyu Moon
چکیده

Capacitive-type transduction is now widely used in MEMS microphones. However, its sensitivity decreases with reducing size, due to decreasing air gap capacitance. In the present study, we proposed and developed the Electret Gate of Field Effect Transistor (ElGoFET) transduction based on an electret and FET (field-effect-transistor) as a novel mechanism of MEMS microphone transduction. The ElGoFET transduction has the advantage that the sensitivity is dependent on the ratio of capacitance components in the transduction structure. Hence, ElGoFET transduction has high sensitivity even with a smaller air gap capacitance, due to a miniaturization of the transducer. A FET with a floating-gate electrode embedded on a membrane was designed and fabricated and an electret was fabricated by ion implantation with Ga(+) ions. During the assembly process between the FET and the electret, the operating point of the FET was characterized using the static response of the FET induced by the electric field due to the trapped positive charge at the electret. Additionally, we evaluated the microphone performance of the ElGoFET by measuring the acoustic response in air using a semi-anechoic room. The results confirmed that the proposed transduction mechanism has potential for microphone applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Analysis of the Electret Air-gap Field- Effect Structure for Sensor Applications

In order to develop a capacitive solid state sensor that makes use of an electret, a theoretical analysts 1s given of an electret air-gap held-effect structure This structure 1s basically an MOS transistor with a movable gate and can thus be considered as a pressure-sensltlve field effect transistor It 1s shown that the addition of a metal layer on top of the semlconductor-oxide increases the s...

متن کامل

An Electret-based Pressure Sensitive Mos Transistor

The operation of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is based on the fact that the lateral conductivity of silicon at the silicon dioxide-silicon interface strongly depends on the transverse electric field in the oxide. Adding a small air-filled spacer between metal gate and oxide, and applying a voltage across the insulator on top of the silicon, the lateral conducti...

متن کامل

General Considerations of Noise in Microphone Preamplifiers

In this paper a study of the noise performance of electret microphone systems as a part of hearing aids is presented. The signalto-noise ratio of the microphone-preamplifier combination, containing a field-effect transistor (FET) and a high value resistive bias element in a hybrid configuration, is mainly determined by the noise generated in the preamplifier circuit. A theoretical analysis of t...

متن کامل

Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET)

We present the design and simulation of a single-walled carbon nanotube(SWCNT)-based field-effect transistor (FET) using Silvaco TCAD. In this paper, theself-heating effect modeling of the CNT MOSFET structure is performed and comparedwith conventional MOSFET structure having same channel length. The numericalresults are presented to show the self-heating effect on the I...

متن کامل

Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor

In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015